Object Oriented Programming

Programming Languages

Declarative languages (Haskell, ML, Prolog...)

OO languages (C++, Java, Python...)

procedural languages (C, FORTRAN)

assembly languages

Machine languages

Some Features of OOP languages

* An OOP language should support
— Easy Representation of
« Real-world objects
* Their States and Abilities
— Interaction with objects of same type
— Relations with objects of other type
— Polymorphism and Overloading
* Reusability of code
« Convenient type definitions

What are objects?

* Objects model elements of the problem
context

Each object has:
—characteristics
—responsibilities (or behaviours)

An Example

Problem Design and build a computer hockey game

Object Hockey player

Characteristics Position, height, weight, salary, number
of goals

Responsibilities Pass the puck, shoot, skate forward,
skate backward, punch another player, etc.

Basic OOP in C++

Classes

A class iIs like a cookie cutter: it defines the
shape of objects

Objects are like cookies; they are instances
of the class

Often the objects are modeled
after real-world entities.

Class and Object

* Object
— An entity with unique identity that encapsulate state
— state can be accessed in a controlled way from outside

— The access is provided by means of methods
(procedures that can directly access the internal state)

* Class
— A specification of objects in an incremental way
— By inheriting from other classes

— And specifying how its objects (instances) differ from
the objects of the inherited classes

Classes
* A class definition begins with the keyword

 The body of the class is contained within a set of
braces, (notice the semi-colon).

class class_name Any valid

{

Identifier

Class body (data
member + methods)

Classes

« Within the body, the keywords private: and public:

specify the access level of the members of the
class.

— the default is private.

« Usually, the data members of a class are declared
In the private: section of the class and the member
functions are in public: section.

Classes

class class name

{

private members or

private: el methods

Public members or
methods

Classes

Member access specifiers
— public: | |
 can be accessed outside the class directly.
— The public stuff is the interface.

— private:
» Accessible only to member functions of class

* Private members and methods are for
Internal use only.

class Circle

{

No need for others classes to access
private: and retrieve its value directly. The
double radius: class methods are responsible for

. that.
public:

void setRadius(double r);

double getDiameter();
double getArea(); They are accessible from outside

the class, and they can access the

double getCircumference(); member (radius)

Creating an object of a Class

* Declaring a variable of a class type creates an
object. You can have many variables of the same

type (class).
— Instantiation

* Once an object of a certain class is instantiated, a
new memory location is created for it to store its
data members and code

* You can Instantiate many objects from a class type.
— EX) Circle c; Circle *c;

Implementing class methods

Class implementation: writing the code of class
methods.

There are two ways:

1. Member functions defined outside class
« Using Binary scope resolution operator (: :)
 “Ties” member name to class name
« Uniquely identify functions of particular class
« Different classes can have member functions with
same name

— Format for defining member functions
ReturnType ClassName: :MemberFunctionName ()

{

Implementing class methods
2. Member functions defined inside class

— Do not need scope resolution operator,
class name;

class Circle
{ -
private:
double radius; Defined
public: Inside
Circle() { radius = 0.0;} class
Circle(intr);
volid setRadius(double r){radius
double getDiameter(){ return ra
double getArea();
double getCircumference();

Lxample

Accessing Class Members

« Operators to access class members
— ldentical to those for structs

— Dot member selection operator (.)
* Object
» Reference to object
— Arrow member selection operator (->)

e Pointers

Special Member Functions

e Constructor:
— Public function member

— called when a new object is created
(instantiated).

— Initialize data members.
— Same name as class
— No return type
— Several constructors
* Function overloading

Special Member Functions

class Circle

{

Constructor with

private:
no argument

double radius:

public: Constructor with
Circle(): / one argument
Circle(intr);
volid setRadius(double r);
double getDiameter();
double getArea();

double getCircumference();

public:
Circle() { radius = 0.0;}
Circle(int r);
volid setRadius(double r){radius =

r}

double getDiameter(){ return radius

double getArea(); void main ()
: {
double getCircumferen =/ ..

}; | g

Circle::Circle(int r) e e,

¥

double Circle::getArea() cout<<“The circumference of cl:”

<< cl.getCircumference () <<™\n”;

)

//cl.raduis = 5;//syntax error

radius =r; cl.setRadius (5) ;

cout<<“The Diameter of c2:”
<<c2.getDiameter () <<™\n”;

return radius * radius * (22

public:
Circle() { radius = 0.0;}
Circle(int r);
volid setRadius(double r){radius =
r}

double getDiameter(){ return radius

double getArea();
double getCircumfereneai:

}_ void main ()
)

{

Circle::Circle(intr) Cirele ¢(7);
{ Circle *cp &C;

Circle *cp2 new Circle(7);

radius =r;
cout<<“The are of cp2:”
} <<cpZ2->getAreal() ;

double Circle::getArea() |
{
return radius * radius * (22.0/7);

)

Destructors

e Destructors
— Special member function

— Same name as class
- Preceded with tilde (~)

— No arguments
— No return value
— Cannot be overloaded

— Before system reclaims object’'s memory
* Reuse memory for new objects
« Mainly used to de-allocate dynamic memory locations

void Time: :printTime ()
}
cout<<"The time is : ("<<*hour<<":"<<*minute<<":"<<*second<<")"
>>endl;

{

Time: :~Time ()

}

delete hour; delete minute;delete second;

{

void main|()

} Output:

Time *t; The time is : (3:55:54)
t= new Time (3,55,54);

t->printTime () ; The time is : (7:17:43)
Press any key to continue

t->setHour (7) ;
t->setMinute (17) ;
t->setSecond (43) ;

t->printTime () ;
delete t;

Access control: public vs. private

public:

> private

public

In general,
» keep member fields as private
» minimize the amount of public parts

