
Object Oriented Programming

Programming Languages

Declarative languages (Haskell, ML, Prolog...)

OO languages (C++, Java, Python...)

procedural languages (C, FORTRAN)

assembly languages

Machine languages

• An OOP language should support

– Easy Representation of

• Real-world objects

• Their States and Abilities

– Interaction with objects of same type

– Relations with objects of other type

– Polymorphism and Overloading

• Reusability of code

• Convenient type definitions

Some Features of OOP languages

What are objects?

• Objects model elements of the problem

context

Each object has:

– characteristics

– responsibilities (or behaviours)

An Example

Basic OOP in C++

Classes

A class is like a cookie cutter; it defines the

shape of objects

Objects are like cookies; they are instances

of the class

Often the objects are modeled

after real-world entities.

Class and Object

• Object

– An entity with unique identity that encapsulate state

– state can be accessed in a controlled way from outside

– The access is provided by means of methods
(procedures that can directly access the internal state)

• Class

– A specification of objects in an incremental way

– By inheriting from other classes

– And specifying how its objects (instances) differ from
the objects of the inherited classes

Classes
• A class definition begins with the keyword class.

• The body of the class is contained within a set of

braces, { } ; (notice the semi-colon).

class class_name

{

….

….

….

};

Any valid

identifier

Class body (data

member + methods)

Classes

• Within the body, the keywords private: and public:
specify the access level of the members of the
class.

– the default is private.

• Usually, the data members of a class are declared
in the private: section of the class and the member
functions are in public: section.

Classes

class class_name

{

private:

…

…

…

public:

…

…

…

};

private members or

methods

Public members or

methods

Classes

• Member access specifiers

– public:
• can be accessed outside the class directly.

– The public stuff is the interface.

– private:

• Accessible only to member functions of class

• Private members and methods are for
internal use only.

class Circle

{

private:

double radius;

public:

void setRadius(double r);

double getDiameter();

double getArea();

double getCircumference();

};

No need for others classes to access

and retrieve its value directly. The

class methods are responsible for

that.

They are accessible from outside

the class, and they can access the

member (radius)

Creating an object of a Class

• Declaring a variable of a class type creates an
object. You can have many variables of the same
type (class).
– Instantiation

• Once an object of a certain class is instantiated, a
new memory location is created for it to store its
data members and code

• You can instantiate many objects from a class type.

– Ex) Circle c; Circle *c;

Implementing class methods

Class implementation: writing the code of class

methods.

There are two ways:

1. Member functions defined outside class

• Using Binary scope resolution operator (::)

• “Ties” member name to class name

• Uniquely identify functions of particular class

• Different classes can have member functions with

same name

– Format for defining member functions
ReturnType ClassName::MemberFunctionName()

{

}

Implementing class methods
2. Member functions defined inside class

– Do not need scope resolution operator,

class name;

class Circle

{

private:

double radius;

public:

Circle() { radius = 0.0;}

Circle(int r);

void setRadius(double r){radius = r;}

double getDiameter(){ return radius *2;}

double getArea();

double getCircumference();

};

Defined

inside

class

Defined outside class

Accessing Class Members

• Operators to access class members

– Identical to those for structs

– Dot member selection operator (.)

• Object

• Reference to object

– Arrow member selection operator (->)

• Pointers

Special Member Functions

• Constructor:

– Public function member

– called when a new object is created
(instantiated).

– Initialize data members.

– Same name as class

– No return type

– Several constructors

• Function overloading

Special Member Functions

class Circle

{

private:

double radius;

public:

Circle();

Circle(int r);

void setRadius(double r);

double getDiameter();

double getArea();

double getCircumference();

};

Constructor with

no argument

Constructor with

one argument

double radius;

public:

Circle() { radius = 0.0;}

Circle(int r);

void setRadius(double r){radius =

r;}

double getDiameter(){ return radius

*2;}

double getArea();

double getCircumference();

};

Circle::Circle(int r)

{

radius = r;

}

double Circle::getArea()

{

return radius * radius * (22.0/7);

}

double Circle:: getCircumference()

void main()

{

Circle c1,c2(7);

cout<<“The area of c1:”

<<c1.getArea()<<“\n”;

//c1.raduis = 5;//syntax error

c1.setRadius(5);

cout<<“The circumference of c1:”

<< c1.getCircumference()<<“\n”;

cout<<“The Diameter of c2:”

<<c2.getDiameter()<<“\n”;

}

The first

constructor is

called

The second

constructor is

called

Since radius is

a private class

data member

double radius;

public:

Circle() { radius = 0.0;}

Circle(int r);

void setRadius(double r){radius =

r;}

double getDiameter(){ return radius

*2;}

double getArea();

double getCircumference();

};

Circle::Circle(int r)

{

radius = r;

}

double Circle::getArea()

{

return radius * radius * (22.0/7);

}

double Circle:: getCircumference()

void main()

{

Circle c(7);

Circle *cp1 = &c;

Circle *cp2 = new Circle(7);

cout<<“The are of cp2:”

<<cp2->getArea();

}

Destructors

• Destructors

– Special member function

– Same name as class

• Preceded with tilde (~)

– No arguments

– No return value

– Cannot be overloaded

– Before system reclaims object’s memory

• Reuse memory for new objects

• Mainly used to de-allocate dynamic memory locations

void Time::printTime()

{

cout<<"The time is : ("<<*hour<<":"<<*minute<<":"<<*second<<")"

<<endl;

}

Time::~Time()

{

delete hour; delete minute;delete second;

}

void main()

{

Time *t;

t= new Time(3,55,54);

t->printTime();

t->setHour(7);

t->setMinute(17);

t->setSecond(43);

t->printTime();

delete t;

}

Output:

The time is : (3:55:54)

The time is : (7:17:43)

Press any key to continue

Destructor: used here to de-

allocate memory locations

When executed, the

destructor is called

