Introduction to C and C++

HIGH THOUGHTS MUST HAVE
HIGH LANGUAGE
-Aristophanesy

History of C

The initigl development occurred at ATRT Bell 1 2B =2 hotween

1969 and 10 i "‘
First immplss ted ing ,
- = -

By Den

Martin , ds of t
ANS| € SiEiesE

1ISO inle

- - o~

- -

Your potential. Our passion.”

Connecting People ~imagination at work
4 Think different.

‘::_-:-. -

Lete make things betfer

Applications of

0N

Adobe

Adobe Photoshop-cs Z

Adobe lllustratorcs2

Create breathtakin,

= Linux
S

. Google Chrome

Microsoft

Your potential. Our passion.”

(]

" Microsoftw
HEU Visual StUdiO Microsoft’ I_'U
Windows WlndOWS

Media Player

History of C++

Basically an

Created in 1¢
He added so 'C with

Classes".

Getting started

e C / C++ program consists of

Character set

Identifiers and keywords
Constants and Variables
Data types

Operators and Expressions

Statements

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRINTCD HALL ZOFTWASE ZInLs

Character set

Alphabets

C is case sensitive

Total 2 93 characters

Identifiers

Names given to various program elements like

— Variables
— Constants
— Functions

— Arrays
Should begin with an alphabet
Can consist of alphabets, digits & underscore
Maximum 32 characters

Meaningful — should represent the purpose for which it is used

ldentifiers

Identifier for a variable to store acceleration due to gravity

accng Possible
Accn_g Possible
Accng Possible
Accn-g Not possible
981laccng Not possible

Accng 981 possible

Keywords

 |dentifiers reserved for specific usages in C / C++
* Have standard predefined meanings

e Can be used only for the intended purpose

Keywords

Keywords

auto double |int struct
break else long switch
case enum register |typedef
char extern ([return union
const float short unsigned
continue |for signed void
default |goto sizeof volatile
do if static while

CONSTANTS

12.3 “123”
12 12. ‘a’ “a”
1 1.0 ‘N “A”
1345 13.45 ‘%’ “%”
Takes No meaning. A

corresponding ASCIl group of single
value. Hence used character constants
in expressions for

calculations

Variables

Identifier used to represent a single data item

Variable names correspond to locations in the

computer's memory

Every variable has a name, a type, a size and a value

Once data is assigned to a variable, the same data can be

accessed later by referring to the variable name

Eg. Sum, avg, total,

Variables

° int sum; >

sum

sum = 10 R I N R S O O

23 1 +22* 0 4+21x1 +20*%x0 =10

Data types

* Character - char
— Holds single character constants
— 8 bit (1 byte) memory
— -128 to 127
* Integer - int
— Holds integer quantities
— 16 bit (2 bytes) memory
— -32768 to 32767

Data types

* Floating point — float
— Holds real quantities with a fractional component
— 8 digit precision
— 32 bit (4 bytes) memory
— 3.4x1038t03.4x10%38

 Double precision floating point — double
— Holds real quantities with a fractional component
— 64 bit (8 bytes) memory

— 1.8x103% t0 1.8 x 10+308

Declaration of variables

e Variables should be declared prior to their use

— Indicates which type of data is to be contained by the variable
e Syntax

— Data typevl, v2, v3;
e Examples

— char name, letter;

— int sum, remainder;

— float avg, area, volume;

— double root, value;

Operators

Symbols which tell the computer to perform specific

mathematical operations
Operands

Unary and binary operators
Arithmetic, Relative, Logical

Equality, Assighment

Arithmetic Operators

Operator Action
- Subtraction
Unary minus
== Addition
Unary plus
¥ Multiplication
/ Division
%0 Modulus division
- Decrement
++ Increment

Hierarchy of Arithmetic Operators

++, --, -, + (Unary)
*I /I %
+, - (binary)

Associativity = left to right

Increment / decrement operators

* Action
> ++ = adds one to the operand

» -- = subtracts one from the operand

* Two types
» Pre increment (++a) and post increment (a++)

» Pre decrement (--a) and post decrement (a--)

Increment / decrement operators

e Examples

A=10 A =10

B = ++A B = A++
A=10 A=10
A=A+1=11 B=10
B=11 A=A+1=11

A=10 A =10

B = --A B = A--
A=10 A=10
A=A-1=9 B=1
B=9 A=A-1=9

Increment / decrement operators

* Practice problem
v P =1;
v Q= P++;
v Q=P-;
v Q=--P;
v Q=++P;
— Obtain the values stored in P and Q after the execution of this

program segment.

Increment / decrement operators

Answer P Q
P=1 1 -
Q= P++ 2 1
Q= P-; 1 2
Q=-P 0 0
Q = ++P; 1 1

Increment / decrement operators

* Practice problem 2
v P=1;
v Q=-P;
v Q=++P;
v Q= P++;
v Q=P-;
— Obtain the values stored in P and Q after the execution of this

program segment.

Relational Operators

Operator Action
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Equal to EQUALITY

Not equal to OPERATORS

Relational Operators

e Practice session
- inta =10, b =13;

- float f = 22.5;
— char p = 'a’; //assigns an ascii eqlnt to p, p=97,
Expression Interpretation Value
a>b False 0
b<f True 1
b>=f False 0
p<=f False 0
(a+b)==f False 0
(f-"b") 1="C True 1

Logical Operators

Operator | Action
& & AND
| OR

NOT

Truth Table for Logical Operators

B | A&%B |[A||B| !A IB
1 1 1 0 0
0 0 1 0 1
1 0 1 1 0
0 0 0 1 1

Hierarchy of relational and logical operators

>, <, >=, <=

»

&&

||
Associativity = left to right

Assignment Operators

Operator | Operation Action
= A=B A=B
+= A+=0B A=A+B
-= A -= A=A-B
¥ = A *=B A=A%*B
= A/=B A=A/B
%% = A %= B A=A%B

Associativity -2 right to left

Hierarchy - last

Expressions & Statements

F = ma
F=m?*a

vV = a°
V=a*a*a

area = 7xr°

area=pi*r*r

Expressions & Statements

2m; m,
m, +m,

torque=2*ml1*m2*g/(ml+m2)

Torque =

PE = %k(xz2 —xf)

PE=k*(x2*x2—-x1*x1)/2

V2

2119

s=v*¥v/(2*mu*g) Hs 8. not possible 11

S —

Structure of a C program

e Program is written as a set of functions.
* Main function 2 most important

* Program execution begins with main

General format

Preprocessor directives
Function declarations
Global variable declaration

void main()

{

Local variable declaration;

Statements and function calls;

}

Other function definitions

General format for simple programs

Preprocessor directives

main()

{

Local variable declaration
Statements
Input statement
Execution statement

Output statement

Precompiler directives

e Examples
—#include<iostream.h>

° Includes the header file iostream.h to
the code

—H#define P1 3.14285714

* Assigns the value 3.14285714 to the
variable Pl

Output statement

* Syntax
— cout<<kvl;
— <<
* Insertion or put to operator

* Inserts the contents of the variable on its right
to the cout object

— cout
e Object in iostream.h

e Sends the output to the standard output
device

Output operation

P P
<« <«

Output statement

e Example 1
—A=12;
— COUt<<A;

—Output /

e Example 2
—A=12;

—cout<< “A = “ <<A;

—OQOutput /.

Output statement

e Example 3
—A=12;B=13;
— COUt<<A;
— COUt<<B; /.
— Qutput
e Example 4

—A=12;B=13;
— cout<< “A = “ <<A;

— cout<< “B = “ <<B;

—OQutput —8M88™

Escape sequences
(Backslash character constants)

* Represent non printing characters

* Used in output statements

Escape sequence Character
\n New line
\r Carriage return
\a Alert
\O Null
\b Backspace
\t Horizontal tab
\V Vertical tab

Output statement

e Example 5
—A=12;B=13;
— cout<<A<<“\n”;
— COUt<<B; /.
— Qutput

e Example 6

—~A=12:B=13;
— cout<< “A = “ <<A<<“\n”;

— cout<< “B = “ <<B;

— Output _

Output statement

e Example 7
—A=12;B=13;

— cout<<A<<“\t”:

— COUt<<B; -
—Output /

e Example 8

—~A=12:B=13;
— cout<< “A = “ <<A<<“\t”;

— cout<< “B = “ <<B;

—Qutput ——mmm

Output statement

e Example 7
—A=12;:B=13;
— cout<<A<<“\t”<<B:

Output __——

e Example 8
—A=12;B=13;

_Cout<< IIA= o <<A<<ll\t”<< IIB — o <<B;

— Cascading

Input statement

* Syntax
— cin>>v1;
— ¢in
e Object in iostream.h
* Takes the value from a standard input device

—>>
 Extraction or get from operator

e Gets the value from cin and assigns to the
variable on its right

Input operation

» »
> >

Input statement

e Example 1
—Cin>>A;

e Example 2
—Ccin>>A;
—cin>>B;
—cin>>C;

e Example 3
—cin>>A>>B>>C;

— Cascading

Comments

// Single line

/* This is the way for commenting Multiple lines*/

