DESIGN OF TENSION MEMBERS

INTRODUCTION

Characteristics

- Members Experience
 - Axial force
 - Stretching
 - Uniform stress over the cross section
- Very Efficient Member
 - Strength governed by the material strength
 - Bolt holes affect the strength

Fig.1(b) Tension Members in Bridges

INTRODUCTION Cross Sections Used for Tension Members

INTRODUCTION

INTRODUCTION

Plates with a Hole

Plates with Holes

(a)	(b))
Case a:	Net Area: $= t (b - 2*d)$	

b

Case b: Net Area: = t(b - d)

Case c: Net Area: < t (b - d)

> t (b - 2*d)

P = pitch g = gauge

Plates with Holes

 $A_n = [b - nd + \Sigma(p^2/4g)]$

elastic

elastic -Plastic

Ultimate

Gross Area Design Strength (P_{tg}) $P_{tg} = f_y * A_g / \gamma_{MO}$

 $\gamma_{MO} = 1.15$

Net Area Design Strength (P_{tn}) $P_{tn} = 0.9 * f_u * A_n / \gamma_{M1}$

 $\gamma_{M1} = 1.25$

• ANGLES Eccentrically Loaded Through Gussets

ANGLES UNDER TENSION

- Factors Affecting Angle Strength
 - Effect of Gusset Thickness
 - Effect of Angle Thickness
 - Effect of Shear Lag
 - Effect of End Connections
 - Effect of Block Shear

16

Shear Lag

- Plate when subjected to tension are subjected to shear deformation near edges. (Tensile stress near to zero at edges)
- Shear stress produced in material gradually transfer tension at edges to central axis of plate.
- Transfer of stresses take place in the length of member approximately equal to its width
- Beyond this length tensile stresses are assumed to be uniformly distributed over the whole section of plate.
- Transmission of tension at edges to full width by shear stress is Shear lag
- In case of I- beam, internal transfer of force from flange to web is by shear
- In case of angles transfer of forces from on leg to other is by shear

ANGLES UNDER TENSION

Effect of Shear Lag

Shear Lag \rightarrow Strength Reduction Shear Lag \uparrow as $A_o/A_g \uparrow$ Shear Lag \downarrow as end connection Stiffness \uparrow

Non-Uniform Stress

More stress near restraint Less stress near un-restrained / free ends

Shear Lag...

Angles Single leg connected Eccentrically loaded through gusset plates

Shear Lag...

Effects of Shear Lag

- Strength reduction
 - Part of cross-section ineffective (less stressed)
 - Consider in *Design*

Factors affecting / causing Shear Lag

- Outstand (unconnected part)
 - More outstand more shear lag
 - Thin / slender outstand more shear lag

Connection stiffness

Flexible connection – more shear lag

Rupture of net section

 $T_{dn} = 0.9 \times A_{nc} \times f_u / \gamma_{m1} + \beta \times A_{go} \times f_y / \gamma_{m0}$

- A_{nc} = Net area of the *connected* leg
- A_{go} = Gross area of the unconnected leg
- β = reduction factor based on contribution of unconnected outstand

Angles in Tension...

• Rupture of net section $T_{dn} = 0.9 \times A_{nc} \times f_u / \gamma_{m1} + \beta \times A_{go} \times f_y / \gamma_{m0}$ $\beta = 1.4 - 0.076 \left(\frac{W}{t}\right) \left(\frac{f_y}{f_u}\right) \left(\frac{b_s}{L_c}\right)$ $\leq \left(\frac{f_u}{f_y}\right) \left(\frac{\gamma_{m0}}{\gamma_{m1}}\right)$ ≥ 0.7

 $b_{s} = w + w_{1} - t$

Angles in Tension...

Rupture of net section Limits of $(\beta \times A_{go} \times f_y / \gamma_{m0})$

• Upper limit: $A_{go} \times f_u / \gamma_{m1}$ - Full unconnected length rupture

• Lower limit: 0.7 × A_{go} × f_y / γ_{m0} - 70% of unconnected length yielding

$$\beta = 1.4 - 0.076 \left(\frac{w}{t}\right) \left(\frac{f_y}{f_u}\right) \left(\frac{b_s}{L_c}\right)$$
$$\leq \left(\frac{f_u}{f_y}\right) \left(\frac{\gamma_{m0}}{\gamma_{m1}}\right)$$
$$\geq 0.7$$

ANGLES UNDER TENSION Strength of Net Section $P_{tn} = A_{nc}^* f_{\mu} / \gamma_{M1} + \beta^* A_o f_{\nu} / \gamma_{MO}$ **Strength of Gross Section** $P_{tq} = A_g * f_y / \gamma_{M0}$ **Block Shear Strength** $P_{tb} = (0.62 * A_{vq} * f_v / \gamma_{M0} + A_{tn} * f_u / \gamma_{M1})$ =(0.62 * A_{vn} * f_{u} / γ_{M1} + A_{ta} * f_{n} / γ_{M0})

DESIGN OF TENSION MEMBERS

Efficiency $\eta = P_t / (A_g * f_y / \gamma_{MO})$ **Design Steps** $A_n = P_t / (f_u / \gamma_{M1})$ $\boldsymbol{A}_{g} = \boldsymbol{P}_{t} / (\boldsymbol{f}_{y} / \gamma_{M0})$ Choose a trial section Analyse for its strength

DESIGN OF TENSION MEMBERS

Stiffness Requirements

Designed for compression understress reversal $\ell lr < 250$

Not designed for compression understress reversal $\ell/r < 350$

Members under tension only *l*/r < 400

LUG ANGLE

- A short length of angle section
- Attached to the main tension member at the connecting end

ADVANTAGES

 When a tension member is connected to a gusset plate at its end, a large number of bolts are required, specially when the tensile load is large, necessitating the provision of big size gusset plate

- Size of the gusset plate decreased
- Providing extra gauge lines for accommodating the required number of bolts.
- Increase the efficiency of the outstanding leg and to decrease the length of the end connections

How IS 800-2007 view Lug Angle?

- Effective connection of the lug angle
 - terminate at the end of the member
 - connection start in advance of the member of the gusset plate
 - minimum of two bolts, rivets or equivalent welds

If the main member is an angle

- whole area of the member shall be taken as the effective (whole area = gross area – deduction for bolt holes)
- lug angle to gusset plate = 20% more than the force in outstanding leg
- lug angle to main member = 40% more than the force in outstanding leg

Lug angle....

If the main member is a channel

- Symmetric
- lug angle to gusset plate = 10% more than the force in outstanding leg
- lug angle to main member = 20% more than the force in outstanding leg

Tension splice

- Tension members spliced......
 - Tension member is less than available length
 - different thicknesses

• Web splice

Flange splice

Tension splice....

- both the sides of the member cover plates to form a butt joint
- bolts placed to transfer the load
- Plates of different thickness
 Filler plates or packing plates

Tension splice....

How IS 800-2007 view Tension splice ?

- Strength of the splice plate and bolts design load
- Design shear capacity of bolts carrying shear through packing plates in excess of 6mm

 $\beta_{pk} = 1-0.0125t_{pk}$

Tension splice

Filler plates

Additional bolts – thickness of packing plate >6

mm

For each 2mm thickness of packing, number

increased by 2.5 %.