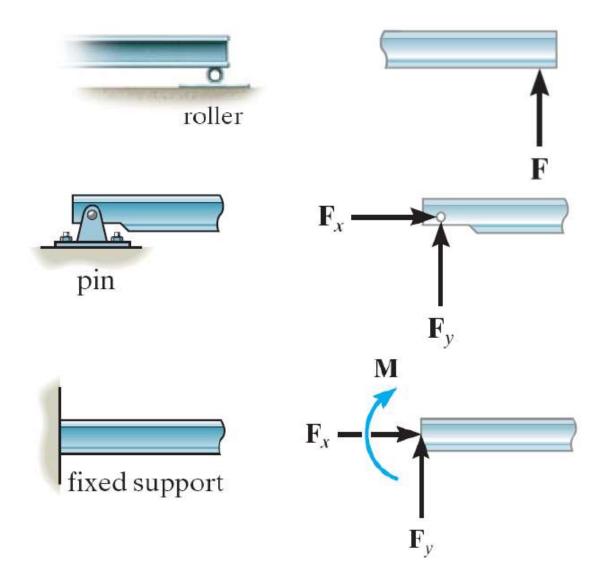
Module 2(contd...)

- Module 2
- Types of supports -
 - Problems involving point loads and uniformly distributed loads only.
- Force systems in space
 - Degrees of freedom –
 - Free body diagram –
 - Equations of equilibrium -
 - -Simple resultant and Equilibrium problems.

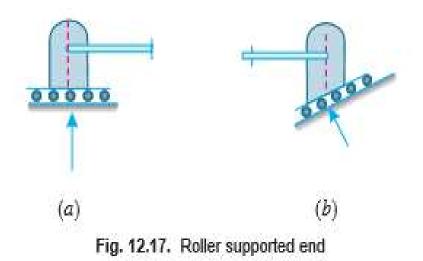
- Equilibrium
- Equilibrium of a body is a condition in which the resultants of all forces acting on the body is zero.

• Types of Supports



12.14. ROLLER SUPPORTED BEAMS

In such a case, the end of a beam is supported on rollers, and the reaction on such an end is always *normal to the support*, as shown in Fig. 12.17 (a) and (b). All the steel trusses, of the bridges, have one of their ends as supported on rollers.



The main advantage, of such a support, is that the beam can move easily towards left or right, on account of expansion or contraction due to change in temperature.

12.15. HINGED BEAMS

In such a case, the end of a beam is hinged to the support as shown in Fig. 12.18. The reaction on such an end may be *horizontal*, *vertical* or *inclined*, depending upon the type of loading. All the steel trusses of the bridges have one of their end roller supported, and the other hinged.

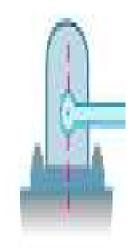
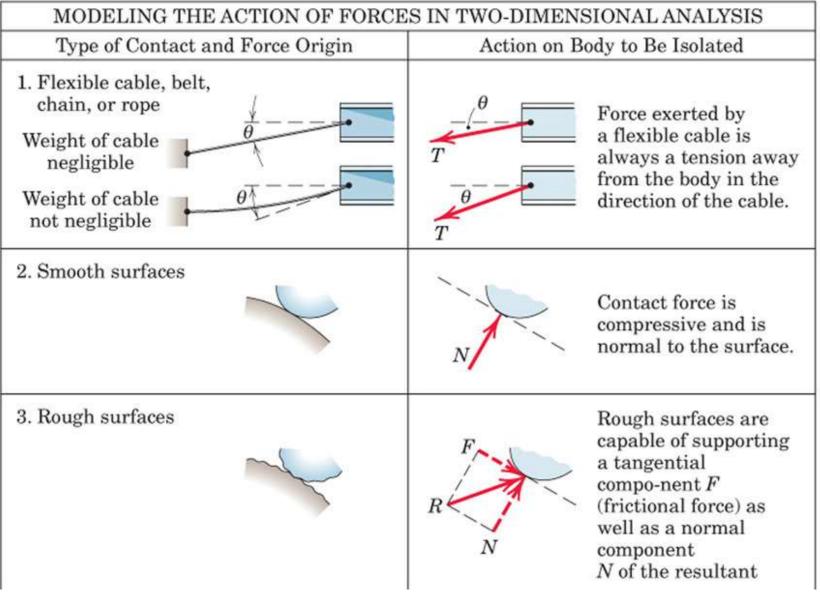
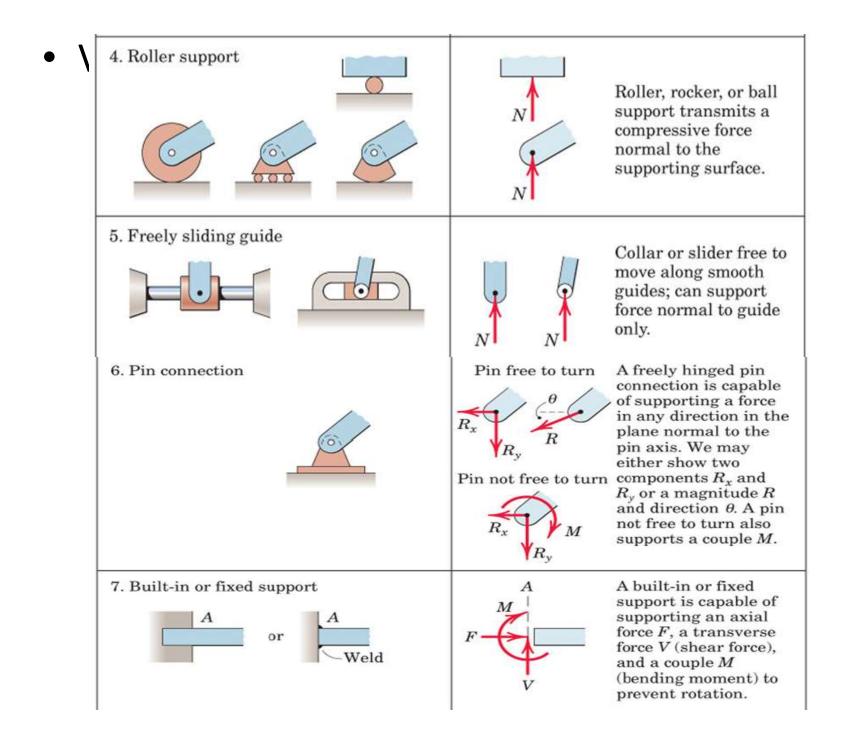
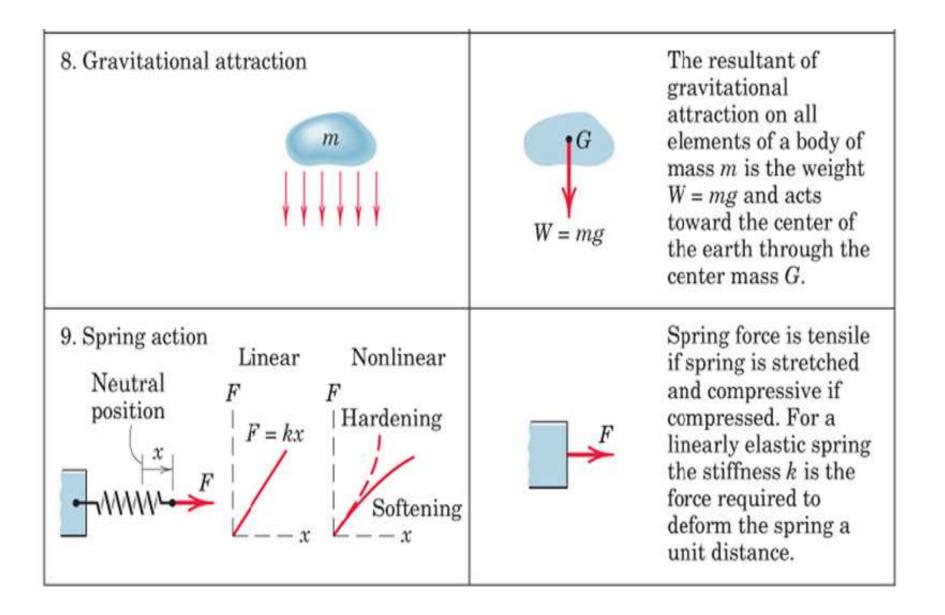


Fig. 12.18. Hinder

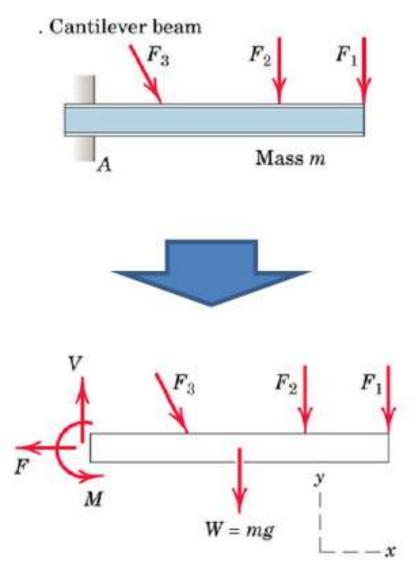
• Various Supports







• Free body diagram



CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS		
Force System	Free-Body Diagram	Independent Equations
1. Collinear	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_3 x	$\Sigma F_x = 0$
2. Concurrent at a point	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_2 \mathbf{F}_3 \mathbf{F}_3	$\Sigma F_x = 0$ $\Sigma F_y = 0$
3. Parallel	\mathbf{F}_{2} \mathbf{F}_{1} \mathbf{F}_{2} \mathbf{F}_{3} \mathbf{F}_{4} \mathbf{F}_{4}	$\Sigma F_x = 0$ $\Sigma M_z = 0$
4. General	F_1 F_2 F_3 y F_4 F_4 F_4	$\Sigma F_x = 0 \qquad \Sigma M_z = 0$ $\Sigma F_y = 0$

- Types of Beams
- Cantilever
- Simply Supported Beam
- Continuous Beam
- Types of Loads
- Concentrated loads W
- Uniformly distributed Loads w.x at centroid
- Uniformly varying load area enclosed by loading patern

- Reactions at supports can be determined by considering the system of forces including applied forces and reactions in equilibrium.
- Use eqns of equilibirium

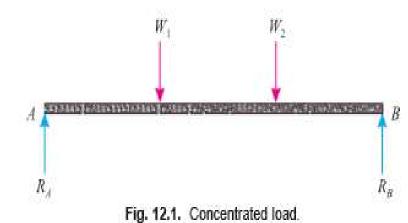
12.2. TYPES OF LOADING

Though there are many types of loading, yet the following are important from the subject point of view :

- 1. Concentrated or point load,
- 2. Uniformly distributed load,
- 3. Uniformly varying load.

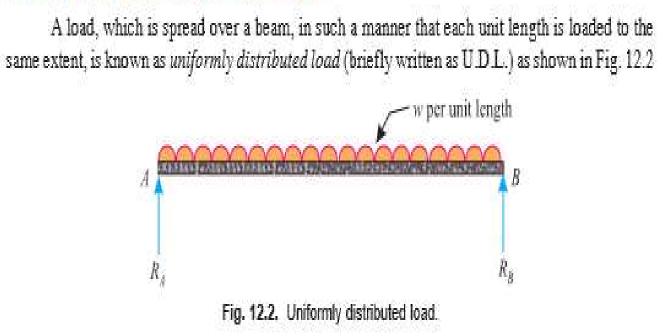
12.3. CONCENTRATED OR POINT LOAD

A load, acting at a point on a beam is known as a *concentrated or a point load* as shown in Fig. 12.1.



In actual practice, it is not possible to apply a load at a point (*i.e.*, at a mathematical point), as it must have some contact area. But this area being so small, in comparison with the length of the beam, is negligible.

12.4. UNIFORMLY DISTRIBUTED LOAD



The total uniformly distributed load is assumed to act at the centre of gravity of the load for all sorts of calculations.

THE OWNER WE WARD DESIGNATION.

12.5. UNIFORMLY VARYING LOAD

A load, which is spread over a beam, in such a manner that its extent varies uniformly on each unit length (say from w_1 per unit length at one support to w_2 per unit length at the other support) is known as uniformly varying load as shown in Fig. 12.3.

Sometimes, the load varies from zero at one support to w at the other. Such a load is also called triangular load.

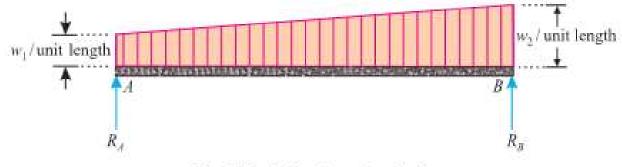
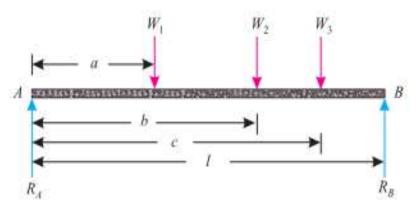


Fig. 12.3. Uniformly varying load.

Note : A beam may carry any one of the above-mentioned load system, or a combinations of the two or more.



Consider a *simply supported beam AB of span l, subjected to point loads W_1 , W_2 and W_3 at distances of a, b and c, respectively from the support A, as shown in Fig. 12.4

Let $R_A = \text{Reaction at } A$, and

 $R_{B} = \text{Reaction at } B.$

We know that sum of the clockwise moments due to loads about A

$$= W_1 a + W_2 b + W_3 c$$
 ...(*i*)

and anticlockwise moment due to reaction $R_{\scriptscriptstyle B}$ about A

$$= R_B l$$
(ii)

Now equating clockwise moments and anticlockwise moments about A,

$$R_{B} l = W_{1} a + W_{2} b + W_{3} c \qquad \dots (\because \Sigma M = 0)$$

or

$$R_{B} = \frac{W_{1}a + W_{2}b + W_{3}c}{l} \qquad ...(iii)$$

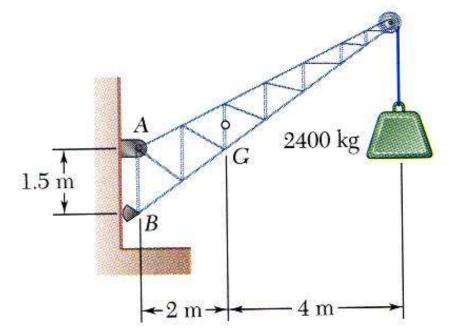
Since the beam is in equilibrium, therefore

$$\begin{split} R_A + R_B &= W_1 + W_2 + W_3 & \dots (\because \Sigma V = 0) \\ R_A &= (W_1 + W_2 + W_3) - R_B \end{split}$$

and

17

- A fixed crane has a mass of 1000 kg and is used to lift a 2400 kg crate. It is held in place by a pin at *A* and a rocker at *B*. The center of gravity of the crane is located at *G*.
- Determine the components of the reactions at *A* and *B*.



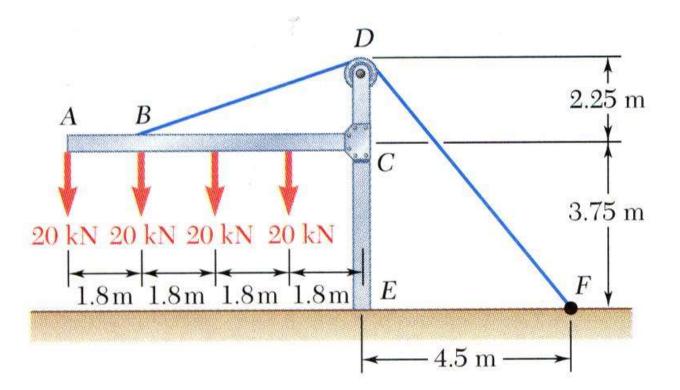
• Determine *B* by solving the equation for the sum of the moments of all forces about *A*. $\sum M_A = 0: + B(1.5m) - 9.81 \text{ kN}(2m)$ $R = \pm 10$

 $-23.5 \,\mathrm{kN}(6\mathrm{m}) = 0$

$$B = +107.1 \,\mathrm{kN}$$

- Determine the reactions at A by solving the equations for the sum of all horizontal forces and all vertical forces.
- $\sum F_x = 0$: $A_x + B = 0$ $A_x = -107.1 \text{kN}$ $\sum F_y = 0$: $A_y - 9.81 \text{kN} - 23.5 \text{kN} = 0$ $A_y = +33.3 \text{kN}$ $A_x = -107.1 \text{kN}$ $A_y = -107.1 \text{kN}$ $A_y = -1$

• The frame supports part of the roof of a small building. The tension in the cable is 150 kN. Determine the reaction at the fixed end *E*.



• Solve 3 equilibrium equations for the reaction force components and couple.

$$\sum F_x = 0: \quad E_x + \frac{4.5}{7.5} (150 \,\text{kN}) = 0 \qquad \qquad E_x = -90.0 \,\text{kN}$$
$$\sum F_y = 0: \quad E_y - 4(20 \,\text{kN}) - \frac{6}{7.5} (150 \,\text{kN}) = 0$$
$$E_y = +200 \,\text{kN}$$

$$\sum M_E = 0: +20 \text{kN}(7.2 \text{ m}) + 20 \text{kN}(5.4 \text{ m}) + 20 \text{kN}(1.8 \text{ m}) + 20 \text{kN}(3.6 \text{ m}) + 20 \text{kN}(1.8 \text{ m}) - \frac{6}{7.5} (150 \text{kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) 4.5 \text{ m} + M_E = 0 \xrightarrow{A \text{ B}} (150 \text{ kN}) \xrightarrow{A$$