Limit State of Collapse - TORSION

CL 41

Loads acting normal to the plane of bending will cause bending moment and shear force.

Loads away from the plane of bending will induce torsional moment along with bending moment and shear.

Torsional moments are of two types:
(i) Primary or equilibrium torsion, and
(ii) Secondary or compatibility torsion.

Primary torsion is required for the basic static equilibrium of most of the statically determinate structures. Accordingly, this torsional moment must be considered in the design

Secondary torsion is required to satisfy the compatibility condition between members. No specific design for torsion is necessary.

Clause 41 of IS 456 stipulates that,

"In structures, where torsion is required to maintain equilibrium, members shall be designed for torsion in accordance with 41.2, 41.3 and 41.4"

However, for such indeterminate structures where torsion can be eliminated by releasing redundant restraints, no specific design for torsion is necessary, provided torsional stiffness is neglected in the calculation of internal forces.

Adequate control of any torsional cracking is provided by the shear reinforcement as per CL. 40".

Space frames - Secondary Torsion

L-beams supporting cantilever sunshades and canopies - Primary Torsion

Edge Beams - Secondary Torsion

Beams curved in plan Primary Torsion

Primary Torsion

Behaviour in Torsion

Torsional Cracks:

Crack pattern is of helical shape

They can be present on all the four faces

Crack Profile: A-B-C-D-E
ED - Bottom face
DC - Front face
CB - Top face
BA - Back face

Equivalent Shear and Moment as per IS 456

- takes into account the combined effects of bending moment, shear force and torsional moment by two empirical relations for
- Equivalent shear, Ve: CL 41.3.1
- Equivalent bending moment, Me1: CL 41.4.2

41.3.1 Equivalent Shear

Equivalent shear, V_{e}, shall be calculated from the formula:

$$
V_{\mathrm{e}}=V_{\mathrm{u}}+1.6 \frac{T_{\mathrm{u}}}{b}
$$

where

$$
\begin{aligned}
& V_{\mathrm{e}}=\text { equivalent shear, } \\
& V_{\mathrm{u}}=\text { shear, } \\
& T_{\mathrm{u}}=\text { torsional moment, and } \\
& b=\text { breadth of beam. }
\end{aligned}
$$

The equivalent nominal shear stress, τ_{ve} in this case shall be calculated as given in 40.1, except for substituting V_{u} by V_{e}. The values of τ_{ve} shall not exceed the values of $\tau_{c \text { max }}$ given in Table 20.

41.4.2 Longitudinal Reinforcement

The longitudinal reinforcement shall be designed to resist an equivalent bending moment, M_{el}, given by

$$
M_{\mathrm{el}}=M_{\mathrm{u}}+M_{\mathrm{t}}
$$

where
$M_{u}=$ bending moment at the cross-section, and

$$
M_{\mathrm{t}}=T_{\mathrm{u}}\left(\frac{1+D / b}{1.7}\right)
$$

Example1

A reinforced concrete rectangular beam $b=300 \mathrm{~mm}, \mathrm{~d}=$ 600 mm and $\mathrm{D}=650 \mathrm{~mm}$ is subjected to factored shear force $\mathrm{V}_{\mathrm{u}}=70 \mathrm{kN}$ in one section. Assuming the percentage of tensile reinforcement as 0.5 in that section, determine the factored torsional moment that the section can resist if
(a)no additional reinforcement for torsion is provided,
(b) maximum steel for torsion is provided in that section, Assume M 30 concrete.

Case (a)

When no additional reinforcement for torsion is provided

For M 30 concrete with 0.5 per cent tensile reinforcement, from
Table 19, $\tau_{c}=0.5 \mathrm{~N} / \mathrm{mm}^{2}$

Equivalent Nominal shear Stress, $\tau_{v e}=\tau_{c}=0.5 \mathrm{~N} / \mathrm{mm}^{2}$.

Equivalent Shear, $V e=\mathcal{T v e} b d$

$$
=0.5 \times 300 \times 600 / 1000=90 \mathrm{kN}
$$

$V e=V u+(1.6 T u / b)$
$90=70+(1.6 \mathrm{Tu} / 0.3)$
$\mathrm{Tu}=3.75 \mathrm{kNm}$

Case (b)

maximum steel for torsion is provided in that section

For M 30 concrete ,from Table $20 \tau_{c, \max }=3.5 \mathrm{~N} / \mathrm{mm}^{2}$

Equivalent Nominal shear Stress, $\tau_{v e}=3.5 \mathrm{~N} / \mathrm{mm}^{2}$.

Equivalent Shear, $V e=\tau_{v e} b d$

$$
=3.5 \times 300 \times 600 / 1000=630 \mathrm{kN}
$$

$V e=V u+(1.6 T u / b)$
$630=70+(1.6 \mathrm{Tu} / 0.3)$
$\mathrm{Tu}=105 \mathrm{kNm}$

Reinforcement for Combined Effects of Bending,
Shear and Torsion

Provided in the form of
(A) Transverse reinforcement only

OR
(B) Longitudinal and Transverse - Both

Case (A)

Transverse Reinforcement Only

CL 41.3.2
41.3.2 If the equivalent nominal shear stress, $\tau_{v e}$ does not exceed τ_{c} given in able 19, minimum shear reinforcement shall be provided as per 26.5.1.6.

Case (B)

Longitudinal and Transverse Reinforcement-Both
CL 41.3.3
41.3.3 If τ_{ve} exceeds τ_{c} given in Table 19, both longitudinal and transverse reinforcement shall be provided in accordance with 41.4.

CL 41.4.2

41.4.2 Longitudinal Reinforcement

The longitudinal reinforcement shall be designed to resist an equivalent bending moment, $M_{e 1}$, given by

$$
M_{\mathrm{el}}=M_{\mathrm{u}}+M_{\mathrm{t}}
$$

where

$$
\begin{aligned}
M_{\mathrm{u}} & =\text { bending moment at the cross-section, and } \\
M_{\mathrm{t}} & =T_{\mathrm{u}}\left(\frac{1+D / b}{1.7}\right)
\end{aligned}
$$

where
T_{u} is the torsional moment, D is the overall depth of the beam and b is the breadth of the beam.

CL 41.4.2.1

41.4.2.1 If the numerical value of M_{t} as defined in 41.4.2 exceeds the numerical value of the moment M_{u}, longitudinal reinforcement shall be provided on the flexural compression face, such that the beam can also withstand an equivalent $M_{e 2}$ given by $M_{e 2}=M_{\mathrm{t}}-M_{\mathrm{u}}$, the moment $M_{e 2}$ being taken as acting in the opposite sense to the moment M_{u}.

B3. Transverse Reinforcement

CL 41.4.3

41.4.3 Transverse Reinforcement

Two legged closed hoops enclosing the corner longitudinal bars shall have an area of cross-section A_{sp} given by

$$
A_{\mathrm{sv}}=\frac{T_{\mathrm{u}} s_{\mathrm{v}}}{b_{1} d_{1}\left(0.87 f_{y}\right)}+\frac{V_{\mathrm{u}} s_{\mathrm{v}}}{2.5 d_{1}\left(0.87 f_{y}\right)}
$$

but the total transverse reinforeement shall not be less than

$$
\frac{\left(\tau_{\mathrm{ve}}-\tau_{\mathrm{c}}\right) b . s_{\mathrm{w}}}{0.87 f_{\mathrm{y}}}
$$

Distribution of Torsion Reinforcement

pg.48-CL 26.5.1.7

26.5.1.7 Distribution of torsion reinforcement

When a member is designed for torsion (see 41 or B-6) torsion reinforcement shall be provided as bellow:
a) The transverse reinforcement for torsion shall be rectangular closed stirrups placed perpendicular to the axis of the member. The spacing of the stirrups shall not exceed the least of $x_{1}, \frac{x_{1}+y_{1}}{4}$ and 300 mm , where x_{1} and y_{1} are respectively the short and long dimensions of the stirrup.
b) Longitudinal reinforcement shall be placed as close as is practicable to the corners of the crosssection and in all cases, there shall be at least one longitudinal bar in each corner of the ties. When the cross-sectional dimension of the member exceeds 450 mm, additional longitudinal bairs shall be provided to satisfy the requirements of minimum reinforcement and spacing given in 26.5.1.3.

Side face reinforcement cl. 26.5.1.3 and 26.5.1.7b

CL 26.5.1.3

Beams exceeding the depth of 750 mm and subjected to bending moment and shear shall have side face reinforcement.

The total area of side face reinforcement shall be at least 0.1 per cent of the web area and shall be distributed equally on two faces at a spacing not exceeding 300 mm or web thickness, whichever is less.

CL 26.5.1.7b
However, if the beams are having torsional moment also, the side face reinforcement shall be provided for the overall depth exceeding 450 mm .

Example2

A reinforced concrete rectangular beam $b=300 \mathrm{~mm}, d=$ 600 mm and $D=650 \mathrm{~mm}$ is subjected to factored shear force $V_{u}=70 \mathrm{kN}, \mathrm{Mu}=215 \mathrm{kNm}, \mathrm{Tu}=100 \mathrm{kNm}$
Assume M 30 concrete, Fe415 steel design the reinforcement.

```
Step 1: Equivalent Shear
\(\mathrm{Ve}=\mathrm{Vu}+1.6(\mathrm{Tu} / \mathrm{b})\)
\(V e=70+1.6(100 / 0.30)=603 \mathrm{kN}\)
```

$\tau_{v e}=603 \times 1000 /(300 \times 600)=3.35 \mathrm{~N} / \mathrm{mm}^{2}$

For M 30 concrete ,from Table $20 \tau c$, $\max =3.5 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{v e}<\tau_{c}, \max$. Hence Depth provided is OK

Step 2: Equivalent Moment

$M_{e 1}=M_{u}+M_{t}=M_{u}+\left(T_{u} 1.7\right)\{1+(D / b)\}$
$M_{e 1}=215+(100 / 1.7)\{1+(650 / 300)\}$
$=215+186.3$
$M_{e 1}=401.3 \mathrm{kNm}$
As per CL 41.4.2.1;
since $M t=186.3$ < Mu=215; No compression reinforcement is required. Only longitudinal tension reinforcement is provided.

Step 3: Tension Reinforcement

$X u, \max / \mathrm{d}=0.48$

As per G.1.1 (c)

$$
\begin{aligned}
\mathrm{Mu}, \lim & =0.36 \times 0.48(1-0.42 \times 0.48) \times 300 \times 600^{2} \times 30 / 10^{6} \\
& =447 \mathrm{kNm}>\mathrm{Me}
\end{aligned}
$$

Hence the beam is under reinforced.

As per CL G 1.1 (b) determine Ast
$401.3 \times 10^{6}=0.87 \times 415 \times$ Ast $\times 600(1-$ (Ast $\times 415 /(300 \times 600 \times 30)$
$=216630$ Ast -16.65 Ast 2
16.65 Ast ${ }^{2}-216630$ Ast $+401.3 \times 10^{6}=0$

Ast $=2237 \mathrm{~mm}^{2}$ provide 5-\#25 (2454 mm²) OK

Step 4: Side face reinforcement

Since the depth of the beam exceeds 450 mm , provide side face reinforcement

Provide Two bars near the mid-depth of the beam, one on each side

Web area $=300 \times(650)$

Area required $=0.1 \times 300 \times 650=195 \mathrm{~mm}^{2}$

Adopt 2-\#12, Area provided $=226.08 \mathrm{~mm}^{2}>195 \mathrm{~mm}^{2}$ OK

Step 5: Transverse Reinforcement

Assuming 2 legged 12 mm dia stirrup

$$
\begin{aligned}
& d_{1}=(600-25-12-12.5)=550.5 \mathrm{~mm} \\
& b_{1}=(300-2 x(25+12+12.5))=201 \mathrm{~mm} \\
& 0.87 \mathrm{fy} \mathrm{Asv} / S_{V}=(T u / b 1 \mathrm{~d} 1)+(\mathrm{Vu} / 2.5 \mathrm{~d} 1) \\
& =100 \times 10^{6} /(201 \times 550.5)+70 \times 10^{3} /(2.5 \times 550.5) \\
& 0.87 \mathrm{fy} \mathrm{Asv} / S_{V}=954.61 \mathrm{~N} / \mathrm{mm}
\end{aligned}
$$

But
0.87 fy Asv/Sv >= (Tve- $T \mathrm{c}$) b

To get τ_{c}, find 100 Ast/ bd $=100 \times 2454 /(300 \times 600)$

$$
=1.36
$$

Table 19, $\boldsymbol{\tau}_{\mathrm{c}}=0.735 \mathrm{~N} / \mathrm{mm}^{2}$
$087 \mathrm{fyAsv} / \mathrm{Sv}>=(3.35-0.735) 300=784.5 \mathrm{~N} / \mathrm{mm}$
Adopt 087 fyAsv/Sv $=954.61 \mathrm{~N} / \mathrm{mm}$

Adopt 0.87 fyAsv/Sv $=954.61 \mathrm{~N} / \mathrm{mm}$

Asv $=2 x\left(\pi \times 12^{2} / 4\right)=226 \mathrm{~mm}^{2}$
Sv $=0.87 \times 415 \times 226 / 954.61=85.47 \mathrm{~mm}$

Step 5: Check for Sv CL 26.5.1.7
$\mathrm{X} 1=(300-2(25+6))=238 \mathrm{~mm}$
$\mathrm{Y} 1=650-2(25+6)=588 \mathrm{~mm}$
$\mathrm{Sv}, \max =\operatorname{Min}(\mathrm{X} 1,(X 1+Y 1) / 4,300)=206 \mathrm{~mm}$
$>\mathrm{Sv}$ OK
Adopt 2L-\#12 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

