# Staircase

# **STAIR CASE**

• Definition

• Stair cases are used for the purpose of giving access to different floors of a structure.



Fig. 2 DOG LEGGED STAIR CASE

## Parts of stairs

- Flight and landing.
- Steps
- Rise-R
- Going-G=T-N
- Tread-T
- Nosing -N



## **Types of stair cases**

- Based on shape
- Straight stairs
- Dog legged stairs
- Open well or open newel stairs
- Geometrical stairs such as spiral, circular, etc.
- Free standing stair cases



Straight SC



Geometric SC



Dog legged SC



Transversely spanning SC

## Some photos

## **Open Well or Newel stair cases**



WITH INTERMEDIATE FLIGHT

#### WITHOUT INTERMEDIATE FLIGHT

## **OTHER STAIRCASES**





SPIRAL AND GEOMETRIC STAIRCASES

### **RISER AND TREAD STAIRCASE**

# CLASSIFICATION

# Based on type of span

- Horizontally spanning or transversely spanning
  SC
- Longitudinally spanning SC.

For details refer IS:456-2000 and SP-34.

# **Guide lines for fixing the dimensions**

- Rise (R) : 150mm to 180mm
- Tread (T) : 220 mm to 250 mm- for residential buildings.
- Rise (R) : 120 to 150 mm
- Tread (T) : 250 mm to 300 mm for public buildings

[T + 2R] : Between 500 mm to 650 mm

The width of the stair

- 0.8 m to 1 m for residential building and
- 1.8 m to 2 m for public building.

# Guide lines for fixing the dimensions Contd...

- The width of the landing is equal to the width of stairs.
- The number of steps in each flight should not be greater than 12
- The pitch of the stair should not be more than 38 degrees.
- The head room measured vertically above any step or below the mid landing shall not be less than 2.1 m.

# **Design of stairs**

- Design for maximum bending moment and check for maximum shear force.
- •
- The depth is to be fixed from deflection criteria.
- Stair case slab is designed as a conventional slab.
- All rules regarding the detailing are similar to that of slab.
- •
- Enough development and anchorage lengths for steel should be provided.

## **Transversally spanning stair case**



Refer SP-34 for more details





### EFFECTIVE SPAN FOR LONGITUDINALLY SPANNING STAIRCASES

WAIST SLAB SUPPORTED AT THE ENDS OF LANDINGS



# Longitudinally spanning SC

- Detailing
- Steel at bottom longitudinally-tension
- Anchorage and development steel
- Distribution steel
- Row of chairs
- Nominal foundation for ground flight

# Exercise contd.,

- Both flights are supported at the ends of
- landing on 230 mm wall.
- (Landing and flight spans in the same direction)
- The first flight starts from the plinth level
- Main steel for each flight = #12@120
- Distribution steel for each flight = #8@ 200
- Use M20 concrete and Fe 415 steel.
- Draw to a suitable scale
- The plan of stair case
- Sectional elevation of the Ground flight
- Sectional elevation of the First flight
- Bar bending schedule

# Solution

•

- Dimensioning:
- R=160 mm, T= 250 mm
- Floor to floor height = 3200mm
- No of rises = 3200/R = 20. Each flight has 10 rises.
- No of treads per flight=10-1 =9
- Width of landing along flight
  - = (4480-9x250)/2 = 1115mm.
- Going of flight=9x250 =2250mm
- Development length =  $47\phi$ =  $47 \times 12 = 564 \text{ mm}$

### Exercise

• Plan of stair case



Clear dimension of stair case room=4.48 m x 2.1 m



Landing and flight spans longitudinally





Flight spans longitudinally on landing beams

## **Details at the junction of flight and landing**



## **STRAIGHT STAIR CASE**



Refer SP-34 and learn the details

- Stair cases-
  - Types-
  - proportioning-
  - loads-
  - distribution of loads
  - stairs spanning horizontally
  - stairs spanning longitudinally
  - design of dog legged
  - tread- riser type stairs

Type of Stair cases

Based on Number of Flights

Dog – legged (Two Flights)

Open well (Three Flights)



Two flight staircase



Open-well staircase

### Based on Structural System

i) Spanning Longitudinally

Both landing and Going span in the same direction



### Effective Span (Le) CL 33.1.(c)

Le = C/C distance between supports

*ii) Landings Spanning transverse to Going* 

Going is supported by landings

Effective Span Le Cl 33.1 (b)



### FIG. 17 EFFECTIVE SPAN FOR STAIRS SUPPORTED AT EACH END BY LANDINGS SPANNING PARALLEL WITH THE RISERS

#### Example 1

Design the Dog legged staircase if supported on walls 300 mm thick along landing slab at both ends.

Floor finish =  $1 \text{ kN/m}^2$ , Live load =  $5 \text{ kN/m}^2$ , riser R = 150 mm, tread T = 300 mm, M 20 and Fe 415.



#### Step 1: Effective Span (Le) of each flight

Stair case is spanning Longitudinally

Le = C/C distance between supports CL 33.1.(c)

Le = 3 + 1 x 2 + 0.3 = 5.3 m

Step 2: Trial Depth of Waist Slab

Le/d = 25 ; d = 5300/25 = 212 mm

Clear cover = 20mm; Dia of bars = 12mm

D = 212 + 20 + 6 = 238 mm

Adopt D = 230 mm; d = 204mm

Step 3: Loads (kN/m<sup>2</sup>)

Loads on going

 $\cos(\theta) = 300/(300^2 + 150^2)^{0.5} = 0.894$ 

Self-weight of waist-slab =  $25(0.23) / Cos(\theta) = 6.43$ Self-weight of steps = 24(0.15/2) = 1.8 Finishes = 1.0 Live loads = 5.0

Total = 14.3

Factored loads =  $1.5(14.3) = 21.5 = 21.5 \text{ kN/m}^2$ 

### Loads on Landing

| Self-weight of waist-slab = 25(0.23) = 5.75 |       |
|---------------------------------------------|-------|
| Finishes                                    | = 1.0 |
| Live loads                                  | = 5.0 |
|                                             |       |

Factored loads = 1.5(11.75) = 17.6 kN/m<sup>2</sup>

Step 4: Limit state of Collapse - Flexure

Consider 1m width of flight



Va = Vb = {(21.5x3) + (17.6x1.15)x2}/2 = 52.49 kN

### i) Mu(@mid span)

= [52.49 x(1.15+1.5)] - [17.6x1.15x(1.5+(1.15/2)] - [21.5x1.5x1.5/2]

= 72.9 kNm per m width

ii) Mu,lim = 0.36x0.48x(1-0.42x0.48)x1000x20x204<sup>2</sup> = 114.8 kNm > Mu Depth OK

iii) <u>Compute Ast per m width</u>

 $72.9 \times 10^{6} = 0.87 \times 415 \times Ast \times 204 \times (1-415 \times Ast/(1000 \times 204 \times 20))$  $72.9 \times 10^{6} = 73654.2 \text{Ast} - 7.49 \text{ Ast}^{2}$  $\text{Ast} = 1117 \text{ mm}^{2}$ 

iv) Ast. Minimum = 0.12 x1000x230/100 = 276 mm<sup>2</sup> < 1117mm<sup>2</sup>

iv) Rebar Details

Main steel: Assume #12 bars

S = 1000x 113/1117 = 101 mm c/c < max spacing Provide #12 @ 100 mm c/c

Distribution Steel: Assume #8 bars

S = 1000x50/276 = 181mm

Provide #8 @ 175 mm c/c

Step 5: Limit state of Collapse - Shear V<sub>u</sub> = 52.49kN

 $T_v$  = 52.49 x1000/(1000x204) = 0.26MPa  $p_t$  = 100x1117/(1000x204) = 0.55%  $\tau_c$  = 0.5MPa (Table 19) k = 1.1

$$T_v < k T_c$$
 Depth OK


## Example 2

Design the open-well staircase supported on brick walls 300 mm thick. Risers =160 mm , Treads = 280 mm, Finish loads =1  $kN/m^2$ , LL = 5  $kN/m^2$ , Use M 20 Fe 415.



Case 1: Design of Flight along 1-1

Step 1: Effective span (Le) CL 33.1 (b)

Le= 300 + 1000 + 1960 +1000 = 4260 mm

#### Step 2: Trial Depth of Waist Slab

L/d = 25; d = 4260/25 = 170 mm Clear Cover = 20mm, Dia of bar =12 mm D = 200 mm; d = 174mm Step 3: Loads (kN/m<sup>2</sup>)

Loads on going

Cos( $\theta$ ) = 280/(280<sup>2</sup>+160<sup>2</sup>)<sup>0.5</sup> = 0.868 Self weight of waist slab = 25x 0.2/ 0.868 = 5.76 Self weight of steps = 24 x 0.16/2 = 1.92 Finish loads = 1.0 Live loads = 5.0

Total =  $13.68 \text{ kN/m}^2$ 

Factored loads = 1.5(13.68) = 20.5 kN/m<sup>2</sup>

#### Landing slab A

Self weight of slab =  $25 \times 0.2 = 5.0$ = 1.00Finish loads= 5.00

Total =  $11 \text{ kN/m}^2$ 

```
Factored loads = 1.5(11) = 16.5 \text{ kN/m}^2
```

Landing slab B (common to both flights) CL 33.2

50 per cent of loads of landing slab A =  $8.25 \text{ kN/m}^2$ 

Step 4: Limit state of Collapse - Flexure

Consider 1m width of flight



i) Reactions : Moments about B

 $Va = [\{16.5x1.15x(4.26 - (1.15/2))\} + \{20.5x1.96x((1.96/2) + 1.15)\} + \{8.25x1.15^2/2\}] / 4.26 = 37.78 \text{ kN}$ 

Va + Vb = [16.5x1.15] + [20.5x1.96] + [8.25x1.15] = 68.64 kN Vb = 30.86 kN

ii) Distance Z from 'A' where SF = 0

37.78 – 16.5 x 1.15 – 20.5 x (Z-1.15) = 0 Z = 2.07 m iii) Mu at 'Z' is maximum

Mu =  $[37.78 \times 2.07] - [16.5 \times 1.15 \times (2.07 - (1.15/2)]$ -  $[20.5 \times (2.07 - 1.15)^2/2]$ = 41.16 kNm per m width iv) Mu,lim = 0.36x0.48x(1-0.42x0.48)x1000x20x174<sup>2</sup> = 83.54 kNm > Mu Depth OK

V) <u>Compute Ast per m width</u>

41.16x10<sup>6</sup> = 0.87x415xAstx174x(1-415xAst/(1000x174x20)) 41.16x10<sup>6</sup> = 62822.7 Ast - 7.49 Ast<sup>2</sup> Ast = 717 mm<sup>2</sup>

iv) Ast. Minimum = 0.12 x1000x200/100 = 240 mm<sup>2</sup> < 717mm<sup>2</sup>

iv) Rebar Details

Main steel: Assume #12 bars

S = 1000x 113/717= 157 mm c/c < max spacing Provide #12 @ 150 mm c/c

Distribution Steel: Assume #8 bars

S = 1000x50/240 = 208mm

Provide #8 @ 200 mm c/c

Step 5: Limit state of Collapse - Shear  $V_u = 37.78 \text{ kN}$ 

 $T_v$  = 37.78 x1000/(1000x174) = 0.22MPa  $p_t$  = 100x717/(1000x174) = 0.41%  $\tau_c$  = 0.44MPa (Table 19) k = 1.2

$$\tau_v < k \tau_c$$
 Depth OK

Case 2: Design of Flight along 2-2

Le= 300 + 1000 + 1960 +1000 = 4260 mm

Loads on going : 20.5 kN/m<sup>2</sup>

Landing slab B and C (common to both flights

50 per cent of loads of landing slab A =  $8.25 \text{ kN/m}^2$ 

Limit state of Collapse - Flexure

Consider 1m width of flight



i) Reactions :

Vb = Vc = 29.6 kN

Mu at Mid Span is maximum

 $Mu = [29.6 \times 2.13] - [8.25 \times 1.15 \times (2.13 - (1.15/2)]$ 

- [ 20.5 x0.98<sup>2</sup>/2] = 38.45 kNm < Mu,lim OK

Compute Ast per m width

- $38.45 \times 10^6 = 62822.7 \text{ Ast} 7.49 \text{ Ast}^2$
- Ast =  $665 \text{ mm}^2 > \text{Ast}$ , minimum

iv) Rebar Details

Main steel: Assume #12 bars

S = 1000x 113/665= 169 mm c/c < max spacing Provide #12 @ 150 mm c/c

Distribution Steel: Assume #8 bars

S = 1000x50/240 = 208mm

Provide #8 @ 200 mm c/c



Rebar Details in Flights 1-1 and 2-2

## Example 3

Design the Dog legged staircase supported on landing slab which is supported on 300 mm thick walls such that landing slab spans transverse to going. Floor finish =  $1 \text{ kN/m}^2$ , Live load =  $5 \text{ kN/m}^2$ , riser R = 150 mm, tread T = 300 mm, M 20 and Fe 415.



 *ii) Landings Spanning transverse to Going* 

Going is supported by landings

Effective Span Le Cl 33.1 (b)



## FIG. 17 EFFECTIVE SPAN FOR STAIRS SUPPORTED AT EACH END BY LANDINGS SPANNING PARALLEL WITH THE RISERS

## Step 1: Effective Span (Le) of each flight

Stair case is spanning between Landings

Le = G + X + Y *CL 33.1.(b)* 

Le = 3 + 0.5 + 0.5= 4 m

Step 2: Trial Depth of Waist Slab

Le/d = 25 ; d = 4000/25 = 160 mm

Clear cover = 20mm; Dia of bars = 12mm

D = 160 + 20 + 6 = 186 mm

Adopt D = 175 mm, d = 149 mm

Step 3: Design of Going Slab (kN/m<sup>2</sup>)

Loads on going (kN/m<sup>2</sup>)

```
\cos(\theta) = 300/(300^2 + 150^2)^{0.5} = 0.894
```

Self-weight of waist-slab =  $25(0.175) / Cos(\theta) = 4.89$ Self-weight of steps = 24(0.15/2)FinishesLive loads= 5.0

Total = 12.7

Factored loads =  $1.5(12.7) = 21.5 = 19 \text{ kN/m}^2$ 

## Step 4: Limit state of Collapse - Flexure

i) Consider 1m width of flight and assume load to be acting as UDL over 4m Span

 $Mu = 19 x 4^2/8 = 38.1 kNm per m width$ 

ii) Mu, lim =  $0.36 \times 0.48 \times (1 - 0.42 \times 0.48) \times 1000 \times 20 \times 149^2$ 

= 61.26 kNm > Mu Depth OK

iii) <u>Compute Ast per m width</u>

38.1x10<sup>6</sup> = 0.87x415xAstx149x(1-415xAst/(1000x149x20)) 38.1x10<sup>6</sup> = 53796.45 Ast - 7.49 Ast<sup>2</sup> Ast = 797 mm<sup>2</sup>

iv) Ast. Minimum = 0.12 x1000x175/100 = 210 mm<sup>2</sup> < 797mm<sup>2</sup>

iv) Rebar Details

Main steel: Assume #12 bars

S = 1000x 113/797= 140 mm c/c < max spacing Provide #12 @ 125 mm c/c

Distribution Steel: Assume #8 bars

S = 1000x50/210 = 238mm

Provide #8 @ 230 mm c/c

Step 5 : Design of Landing Slab Loads on Landing (kN/m<sup>2</sup>)

| Self-weight of slab = 25(0175) | = 4.4 |
|--------------------------------|-------|
| Finishes                       | = 1.0 |
| Live loads                     | = 5.0 |

| Total | = 10.4 |
|-------|--------|
|       |        |

Factored loads =  $1.5(10.4) = 15.6 \text{ kN/m}^2$ 

Consider I M width

Load on Landing Slab = 15.6 kN/mLoad from Going = Load on Going/2 = (19x4)/2 = 38kN/m

UDL on Landing Slab = 53.6 kN/m

Le = 2.3 m

Mu = 53.6 x 2.3  $^{2}/8$  = 35.44 kNm per m width < Mu,lim Depth OK

35.44x10<sup>6</sup> = 53796.45 Ast - 7.49 Ast<sup>2</sup>

Ast =  $734 \text{ mm}^2$ 

Provide #12 @ 125 mm c/c



\* Landing Slab main bar to be placed first

## Example 4

Design the Dog legged staircase supported at the junction of landing and going on 300 mm wide beams such that landing slab are cantilevers. Floor finish =  $1 \text{ kN/m}^2$ , Live load =  $5 \text{ kN/m}^2$ , riser R = 160 mm, tread T = 270 mm, M 20 and Fe 415.



2.4 M

Step 1: Effective Span (Le) of each flight

Going: Le = 2.7 + 0.3 = 3 m

Landing:Le = 1.2+0.15 = 1.35m

Step 2: Trial Depth of Waist Slab

Le/d = 25 ; d = 3000/25 = 120 mm

Le/d = 8 ; d = 1350/8 = 170 mm

Clear cover = 20mm; Dia of bars = 10mm

D = 160 + 20 + 5 = 185 mm

Adopt D = 175 mm, d = 150 mm

Step 3: Design of Going Slab (kN/m<sup>2</sup>)

```
Loads on going (kN/m<sup>2</sup>)
```

```
\cos(\theta) = 270/(270^2 + 160^2)^{0.5} = 0.86
```

Self-weight of waist-slab =  $25(0.175) / Cos(\theta) = 5.09$ Self-weight of steps = 24(0.16/2)FinishesLive loads= 5.0

Total

= 13

Factored loads =  $1.5(13) = 19.5 \text{ kN/m}^2$ 

# Loads on Landing (kN/m<sup>2</sup>)

| Self-weight of slab = 25(0.175) | = 4.4 |
|---------------------------------|-------|
| Finishes                        | = 1.0 |
| Live loads                      | = 5.0 |

| Total | = 10.4 |
|-------|--------|
| Iotal | = 10.4 |

Factored loads =  $1.5(10.4) = 15.6 \text{ kN/m}^2$ 

Consider I M width

Step 4: Limit state of Collapse - Flexure

Consider 1m width of flight



i) <u>Negative Mu(@ supports)</u>

 $= 15.6 \times 1.35^{2}/2 = 14.22 \text{ kNm per m width}$ 

## ii) Positive Moment at Mid Span

Loading on Going = 19.5 kN/m (DL+LL+Finish)

Loading on Landing = 8.1 kN/m (DL+Finish)



 $= 19.5 \text{ x} 3^2/8 - 8.1 \text{x} 1.35^2/2 = 14.56 \text{ kNm per m width}$ 

iii) Mu,lim = 0.36x0.48x(1-0.42x0.48)x1000x20x150<sup>2</sup>
= 62.1 kNm > Mu Depth OK
V) Compute Ast per m width

Positive Moment = 14.56 kNm per m width

 $14.56 \times 10^{6} = 0.87 \times 415 \times 415 \times (1-415 \times 415 \times 415 \times 20))$ 

 $14.56 \times 10^6 = 54157.5 \text{ Ast} - 7.49 \text{ Ast}^2$ 

Ast =  $280 \text{ mm}^2$ 

Negative Moment = 14.22 kNm per m width

```
Provide Ast = 280 \text{ mm}^2
```

iv) Ast. Minimum = 0.12 x1000x175/100 = 210 mm<sup>2</sup> < 280 mm<sup>2</sup>

iv) Rebar Details

Main steel: Assume #10 bars

S = 1000x 78.54/280 = 280 mm c/c < max spacing

Provide #10 @ 250 mm c/c both in Going and Landing

Distribution Steel: Assume #8 bars

S = 1000x50/210 = 238mm

Provide #8 @ 230 mm c/c


## Exercise

- A dog legged stair case is to be detailed with the
- following particulars:
- Clear dimension of stair case room=4.48 m x 2.1 m
- The floor to floor height is 3.2 m
- Width of each tread =250 mm
- Width of each rise = 160 mm
- Thickness of waist slab = 150 mm
- Width of flight =1m
- All round wall = 230 mm