Staircase

STAIR CASE

- Definition
- Stair cases are used for the purpose of giving access to different floors of a structure.

Parts of stair a case

FIG. 1 PARTS OF STAIR CASE

Fig. 2 DOG LEGGED STAIR CASE

Parts of stairs

- Flight and landing.
- Steps
- Rise-R
- Going-G=T-N
- Tread-T
- Nosing -N

Types of stair cases

- Based on shape
- Straight stairs
- Dog legged stairs
- Open well or open newel stairs
- Geometrical stairs such as spiral, circular, etc.
- Free standing stair cases

Straight SC

Geometric SC

Some photos

Dog legged SC

Transversely spanning SC

Open Well or Newel stair cases

WITHOUT INTERMEDIATE FLIGHT

OTHER STAIRCASES

RISER AND TREAD STAIRCASE

CLASSIFICATION

Based on type of span

- Horizontally spanning or transversely spanning SC
- Longitudinally spanning SC.

For details refer IS:456-2000 and SP-34.

Guide lines for fixing the dimensions

- Rise (R) $: 150 \mathrm{~mm}$ to 180 mm
- Tread (T) : 220 mm to 250 mm - for residential buildings.

Rise (R) : 120 to 150 mm
Tread (T) : 250 mm to 300 mm - for public buildings
[$\mathrm{T}+2 \mathrm{R}] \quad:$ Between 500 mm to 650 mm
The width of the stair

- 0.8 m to 1 m for residential building and
- 1.8 m to 2 m for public building.

Guide lines for fixing the dimensions contd...

- The width of the landing is equal to the width of stairs.
- The number of steps in each flight should not be greater than 12
- The pitch of the stair should not be more than 38 degrees.
- The head room measured vertically above any step or below the mid landing shall not be less than 2.1 m .

Design of stairs

- Design for maximum bending moment and check for maximum shear force.
- The depth is to be fixed from deflection criteria.
- \quad Stair case slab is designed as a conventional slab.
- All rules regarding the detailing are similar to that of slab.
- Enough development and anchorage lengths for steel should be provided.

Transversally spanning stair case

Refer SP-34 for more details

TRANSVERSLY SPANNING

EFFECTIVE SPAN FOR LONGITUDINALLY SPANNING STAIRCASES

WAIST SLAB SUPPORTED AT THE ENDS OF
LANDINGS

EFFECTIVE SPAN FOR

LONGITUDINALLY

 SPANNING STAIRCASES

Longitudinally spanning SC

- Detailing
- Steel at bottom longitudinally-tension
- Anchorage and development steel
- Distribution steel
- Row of chairs
- Nominal foundation for ground flight

Exercise contd.,

- Both flights are supported at the ends of
- landing on 230 mm wall.
- (Landing and flight spans in the same direction)
- The first flight starts from the plinth level
- Main steel for each flight = \#12@120
- Distribution steel for each flight = \#8@ 200
- Use M20 concrete and Fe 415 steel.
- Draw to a suitable scale
- The plan of stair case
- Sectional elevation of the Ground flight
- Sectional elevation of the First flight
- Bar bending schedule

Solution

- Dimensioning:
- $\mathrm{R}=160 \mathrm{~mm}, \mathrm{~T}=250 \mathrm{~mm}$
- Floor to floor height $=3200 \mathrm{~mm}$
- No of rises $=3200 / R=20$. Each flight has 10 rises.
- No of treads per flight=10-1 =9
- Width of landing along flight

$$
=(4480-9 \times 250) / 2=1115 \mathrm{~mm} .
$$

- Going of flight $=9 \times 250=2250 \mathrm{~mm}$
- Development length $=47 \phi=47 \times 12=564 \mathrm{~mm}$

Exercise

- Plan of stair case

Clear dimension of stair case room $=4.48 \mathrm{~m} \times 2.1 \mathrm{~m}$

DETAILING

Landing and flight spans longitudinally

Flight spans longitudinally on landing beams

Details at the junction of flight and landing

STRAIGHT STAIR CASE

Refer SP-34 and learn the details

- Stair cases-
- Types-
- proportioning-
- loads-
- distribution of loads
- stairs spanning horizontally
- stairs spanning longitudinally
- design of dog legged
- tread- riser type stairs

Type of Stair cases

Based on Number of Flights

Dog - legged (Two Flights)
Open well (Three Flights)

Open-well staircase

Based on Structural System

i) Spanning Longitudinally

Both landing and Going span in the same direction

Effective Span (Le) CL 33.1.(c)

Le $=\mathrm{C} / \mathrm{C}$ distance between supports

ii) Landings Spanning transverse to Going

Going is supported by landings
Effective Span Le
Cl 33.1 (b)

x	V	SPAN HN METRES
$<1 m$	$<1 m$	$0+x+Y$
$<1 m$	$>1 m$	$0+x+1$
$>1 m$	$<1 m$	$0+Y+1$
$>1 m$	$>1 m$	$0+1+1$

Fig. 17 Effective Span for Stars Supported at Each End by Landings Spanning Parallel. with the Risers

Example 1

Design the Dog legged staircase if supported on walls 300 mm thick along landing slab at both ends.

Floor finish $=1 \mathrm{kN} / \mathrm{m}^{2}$, Live load $=5 \mathrm{kN} / \mathrm{m}^{2}$, riser $R=150 \mathrm{~mm}$, tread $T=300 \mathrm{~mm}, \mathrm{M} 20$ and Fe 415.

Step 1: Effective Span (Le) of each flight

Stair case is spanning Longitudinally
$\mathrm{Le}=\mathrm{C} / \mathrm{C}$ distance between supports CL 33.1.(c)
$\mathrm{Le}=3+1 \times 2+0.3=5.3 \mathrm{~m}$

Step 2: Trial Depth of Waist Slab
Le/d $=25 ; d=5300 / 25=212 \mathrm{~mm}$
Clear cover $=20 \mathrm{~mm} ;$ Dia of bars $=12 \mathrm{~mm}$
$D=212+20+6=238 \mathrm{~mm}$

Adopt D = $230 \mathrm{~mm} ; \mathrm{d}=204 \mathrm{~mm}$

Step 3: Loads (kN/m²)
Loads on going
$\operatorname{Cos}(\theta)=300 /\left(300^{2}+150^{2}\right)^{0.5}=0.894$
Self-weight of waist-slab $=25(0.23) / \operatorname{Cos}(\theta)=6.43$
Self-weight of steps $=24(0.15 / 2)$
= 1.8
Finishes
Live loads

$$
\begin{aligned}
& =1.0 \\
& =5.0
\end{aligned}
$$

Total
$=14.3$
Factored loads $=1.5(14.3)=21.5=21.5 \mathrm{kN} / \mathrm{m}^{2}$

Loads on Landing

Self-weight of waist-slab $=25(0.23)=5.75$
Finishes
Live loads $=5.0$

Total

$$
=11.75
$$

Factored loads $=1.5(11.75)=17.6 \mathrm{kN} / \mathrm{m}^{2}$

Step 4: Limit state of Collapse - Flexure

Consider 1 m width of flight

$21.5 \mathrm{kN} / \mathrm{m}$

$\mathrm{Va}=\mathrm{Vb}=\{(21.5 \times 3)+(17.6 \times 1.15) \times 2\} / 2=52.49 \mathrm{kN}$
i) Mu(@mid span)
$=[52.49 \times(1.15+1.5)]-[17.6 \times 1.15 \times(1.5+(1.15 / 2)]-[21.5 \times 1.5 \times 1.5 / 2]$
$=72.9 \mathrm{kNm}$ per m width
ii) $\mathrm{Mu}, \lim =0.36 \times 0.48 \times(1-0.42 \times 0.48) \times 1000 \times 20 \times 204^{2}$

$$
=114.8 \mathrm{kNm}>\mathrm{Mu} \quad \text { Depth OK }
$$

iii) Compute Ast per m width
$72.9 \times 10^{6}=0.87 \times 415 \times$ Astx204x(1-415xAst/(1000×204×20))
$72.9 \times 10^{6}=73654.2$ Ast -7.49 Ast 2
Ast $=1117 \mathrm{~mm}^{2}$
iv) Ast. Minimum $=0.12 \times 1000 \times 230 / 100=276 \mathrm{~mm}^{2}<1117 \mathrm{~mm}^{2}$
iv) Rebar Details

Main steel: Assume \#12 bars

$$
S=1000 \times 113 / 1117=101 \mathrm{~mm} \mathrm{c} / \mathrm{c}<\max \text { spacing }
$$

Provide \#12 @ 100 mm c/c

Distribution Steel: Assume \#8 bars
$S=1000 \times 50 / 276=181 \mathrm{~mm}$
Provide \#8 @ 175 mm c/c

Step 5: Limit state of Collapse - Shear

$$
\begin{aligned}
& V_{u}=52.49 \mathrm{kN} \\
& \tau_{\mathrm{v}}=52.49 \times 1000 /(1000 \times 204)=0.26 \mathrm{MPa} \\
& \mathrm{p}_{\mathrm{t}}=100 \times 1117 /(1000 \times 204)=0.55 \% \\
& \left.\tau_{\mathrm{c}}=0.5 \mathrm{MPa} \text { (Table } 19\right) \\
& \mathrm{k}=1.1
\end{aligned}
$$

$$
\tau_{\nu<k} \tau_{c}
$$

Depth OK

Example 2

Design the open-well staircase supported on brick walls 300 mm thick. Risers $=160 \mathrm{~mm}$,Treads $=280 \mathrm{~mm}$, Finish loads $=1 \mathrm{kN} / \mathrm{m}^{2}, L L=5 \mathrm{kN} / \mathrm{m}^{2}$, Use M 20 Fe 415.

Case 1: Design of Flight along 1-1

Step 1: Effective span (Le) CL 33.1 (b)

$$
\text { Le }=300+1000+1960+1000=4260 \mathrm{~mm}
$$

Step 2: Trial Depth of Waist Slab

$\mathrm{L} / \mathrm{d}=25 ; \mathrm{d}=4260 / 25=170 \mathrm{~mm}$
Clear Cover $=20 \mathrm{~mm}$, Dia of bar $=12 \mathrm{~mm}$
$D=200 \mathrm{~mm} ; \mathrm{d}=174 \mathrm{~mm}$

Step 3: Loads (kN/m²)
Loads on going
$\operatorname{Cos}(\theta)=280 /\left(280^{2}+160^{2}\right)^{0.5}=0.868$
Self weight of waist slab $=25 \times 0.2 / 0.868=5.76$
Self weight of steps $=24 \times 0.16 / 2=1.92$
Finish loads
= 1.0
Live loads $=5.0$

Total $=13.68 \mathrm{kN} / \mathrm{m}^{2}$
Factored loads $=1.5(13.68)=20.5 \mathrm{kN} / \mathrm{m}^{2}$

Self weight of slab $=25 \times 0.2=5.0$
Finish loads $\quad=1.00$

Live loads

Total $=11 \mathrm{kN} / \mathrm{m}^{2}$

Factored loads $=1.5(11)=16.5 \mathrm{kN} / \mathrm{m}^{2}$

Landing slab B (common to both flights) CL 33.2

50 per cent of loads of landing slab $A=8.25 \mathrm{kN} / \mathrm{m}^{2}$

Step 4: Limit state of Collapse - Flexure

Consider 1 m width of flight

$20.5 \mathrm{kN} / \mathrm{m}$

i) Reactions : Moments about B

$$
\begin{gathered}
\mathrm{Va}=[\{16.5 \times 1.15 \times(4.26-(1.15 / 2))\}+\{20.5 \times 1.96 \times((1.96 / 2)+1.15)\} \\
\left.+\left\{8.25 \times 1.15^{2} / 2\right\}\right] / 4.26=37.78 \mathrm{kN}
\end{gathered}
$$

```
Va + Vb = [16.5\times1.15] + [20.5\times1.96] + [8.25\times1.15]
    = 68.64 kN
Vb=30.86 kN
```

ii) Distance Z from ' A ' where $S F=0$
$37.78-16.5 \times 1.15-20.5 \times(Z-1.15)=0$ $Z=2.07 \mathrm{~m}$
iii) Mu at ' Z ' is maximum

$$
\begin{aligned}
\mathrm{Mu} & =[37.78 \times 2.07]-[16.5 \times 1.15 \times(2.07-(1.15 / 2)] \\
& -\left[20.5 \times(2.07-1.15)^{2} / 2\right] \\
& =41.16 \mathrm{kNm} \text { per } \mathrm{m} \text { width }
\end{aligned}
$$

iv) $\mathrm{Mu}, \lim =0.36 \times 0.48 \times(1-0.42 \times 0.48) \times 1000 \times 20 \times 174^{2}$

$$
=83.54 \mathrm{kNm}>\mathrm{Mu} \quad \text { Depth OK }
$$

v) Compute Ast per m width
$41.16 \times 10^{6}=0.87 \times 415 \times A s t \times 174 \times(1-415 \times A s t /(1000 \times 174 \times 20))$
41.16×10 ${ }^{6}=62822.7$ Ast - 7.49 Ast ${ }^{2}$

Ast $=717 \mathrm{~mm}^{2}$
iv) Ast. Minimum $=0.12 \times 1000 \times 200 / 100=240 \mathrm{~mm}^{2}<717 \mathrm{~mm}^{2}$
iv) Rebar Details

Main steel: Assume \#12 bars

$$
S=1000 \times 113 / 717=157 \mathrm{~mm} \mathrm{c} / \mathrm{c}<\max \text { spacing }
$$

Provide \#12 @ 150 mm c/c

Distribution Steel: Assume \#8 bars
$S=1000 \times 50 / 240=208 \mathrm{~mm}$
Provide \#8 @ 200 mm c/c

Step 5: Limit state of Collapse - Shear $\mathrm{V}_{\mathrm{u}}=37.78 \mathrm{kN}$
$\tau_{v}=37.78 \times 1000 /(1000 \times 174)=0.22 \mathrm{MPa}$
$p_{t}=100 \times 717 /(1000 \times 174)=0.41 \%$
$\tau_{\mathrm{c}}=0.44 \mathrm{MPa}$ (Table 19)
$\mathrm{k}=1.2$
$\tau_{v}<k \tau_{c}$
Depth OK

Case 2: Design of Flight along 2-2
$L e=300+1000+1960+1000=4260 \mathrm{~mm}$

Loads on going: $20.5 \mathrm{kN} / \mathrm{m}^{2}$
Landing slab B and C (common to both flights

50 per cent of loads of landing slab $A=8.25 \mathrm{kN} / \mathrm{m}^{2}$

Limit state of Collapse - Flexure

Consider 1 m width of flight

20.5 kN/m

i) Reactions :
$\mathrm{Vb}=\mathrm{Vc}=29.6 \mathrm{kN}$

Mu at Mid Span is maximum

$$
M u=[29.6 \times 2.13]-[8.25 \times 1.15 \times(2.13-(1.15 / 2)]
$$

- [$20.5 \times 0.98^{2} / 2$] = 38.45 kNm < Mu,lim OK

Compute Ast per m width

$38.45 \times 10^{6}=62822.7$ Ast -7.49 Ast 2
Ast $=665 \mathrm{~mm}^{2}>$ Ast, minimum
iv) Rebar Details

Main steel: Assume \#12 bars

$$
S=1000 \times 113 / 665=169 \mathrm{~mm} \mathrm{c} / \mathrm{c}<\text { max spacing }
$$

Provide \#12 @ 150 mm c/c

Distribution Steel: Assume \#8 bars
$S=1000 \times 50 / 240=208 \mathrm{~mm}$
Provide \#8 @ 200 mm c/c

Rebar Details in Flights 1-1 and 2-2

Example 3

Design the Dog legged staircase supported on landing slab which is supported on 300 mm thick walls such that landing slab spans transverse to going. Floor finish $=1 \mathrm{kN} / \mathrm{m}^{2}$, Live load $=5 \mathrm{kN} / \mathrm{m}^{2}$, riser $R=150 \mathrm{~mm}$, tread $T=300 \mathrm{~mm}$, M 20 and Fe 415.

ii) Landings Spanning transverse to Going

Going is supported by landings
Effective Span Le
Cl 33.1 (b)

x	V	SPAN HN METRES
$<1 m$	$<1 m$	$0+x+Y$
$<1 m$	$>1 m$	$0+x+1$
$>1 m$	$<1 m$	$0+Y+1$
$>1 m$	$>1 m$	$0+1+1$

Fig. 17 Effective Span for Stars Supported at Each End by Landings Spanning Parallel. with the Risers

Step 1: Effective Span (Le) of each flight
Stair case is spanning between Landings
$\mathrm{Le}=\mathrm{G}+\mathrm{X}+\mathrm{Y} \quad$ CL 33.1.(b)
Le $=3+0.5+0.5=4 \mathrm{~m}$
Step 2: Trial Depth of Waist Slab
$\mathrm{Le} / \mathrm{d}=25 ; \mathrm{d}=4000 / 25=160 \mathrm{~mm}$
Clear cover $=20 \mathrm{~mm} ;$ Dia of bars $=12 \mathrm{~mm}$
$D=160+20+6=186 \mathrm{~mm}$
Adopt $\mathrm{D}=175 \mathrm{~mm}, \mathrm{~d}=149 \mathrm{~mm}$

```
Step 3: Design of Going Slab (kN/m}\mp@subsup{}{}{2}
Loads on going (kN/m}\mp@subsup{}{}{2}
Cos(0)=300/(3002+1502}\mp@subsup{)}{}{0.5}=0.89
Self-weight of waist-slab = 25(0.175) / Cos(0) = 4.89
Self-weight of steps = 24(0.15/2) = 1.8
Finishes
Live loads
= 1.0
    = 5.0
Total
= 12.7
```

Factored loads $=1.5(12.7)=21.5=19 \mathrm{kN} / \mathrm{m}^{2}$

Step 4: Limit state of Collapse - Flexure
i) Consider 1 m width of flight and assume load to be acting as UDL over 4 m Span
$\mathrm{Mu}=19 \times 4^{2} / 8=38.1 \mathrm{kNm}$ per m width
ii) $\mathrm{Mu}, \lim =0.36 \times 0.48 \times(1-0.42 \times 0.48) \times 1000 \times 20 \times 149^{2}$
$=61.26 \mathrm{kNm}>\mathrm{Mu}$
Depth OK
iii) Compute Ast per m width
$38.1 \times 10^{6}=0.87 \times 415 \times A s t \times 149 \times(1-415 \times A s t /(1000 \times 149 \times 20))$
$38.1 \times 10^{6}=53796.45$ Ast -7.49 Ast 2
Ast $=797 \mathrm{~mm}^{2}$
iv) Ast. Minimum $=0.12 \times 1000 \times 175 / 100=210 \mathrm{~mm}^{2}<797 \mathrm{~mm}^{2}$
iv) Rebar Details

Main steel: Assume \#12 bars

$$
S=1000 \times 113 / 797=140 \mathrm{~mm} \mathrm{c} / \mathrm{c}<\max \text { spacing }
$$

Provide \#12 @ 125 mm c/c

Distribution Steel: Assume \#8 bars
$S=1000 \times 50 / 210=238 \mathrm{~mm}$
Provide \#8 @ 230 mm c/c

Self-weight of slab $=25(0 . .175) \quad=4.4$
Finishes
$=1.0$
Live loads

$$
=5.0
$$

Total

$$
=10.4
$$

Factored loads $=1.5(10.4)=15.6 \mathrm{kN} / \mathrm{m}^{2}$
Consider I M width

Load on Landing Slab $=15.6 \mathrm{kN} / \mathrm{m}$
Load from Going $=$ Load on Going $/ 2=(19 \times 4) / 2=38 \mathrm{kN} / \mathrm{m}$
UDL on Landing Slab $=53.6 \mathrm{kN} / \mathrm{m}$

$$
\mathrm{Le}=2.3 \mathrm{~m}
$$

$\mathrm{Mu}=53.6 \times 2.3^{2} / 8=35.44 \mathrm{kNm}$ per m width $<\mathrm{Mu}$, lim Depth OK
$35.44 \times 10^{6}=53796.45$ Ast -7.49 Ast 2
Ast $=734 \mathrm{~mm}^{2}$

Provide \#12 @ 125 mm c/c

Example 4

Design the Dog legged staircase supported at the junction of landing and going on 300 mm wide beams such that landing slab are cantilevers. Floor finish $=1 \mathrm{kN} / \mathrm{m}^{2}$, Live load $=5$ $\mathrm{kN} / \mathrm{m}^{2}$, riser $R=160 \mathrm{~mm}$, tread $T=270 \mathrm{~mm}, \mathrm{M} 20$ and Fe 415.

Step 1: Effective Span (Le) of each flight
Going: $\mathrm{Le}=2.7+0.3=3 \mathrm{~m}$
Landing:Le $=1.2+0.15=1.35 \mathrm{~m}$
Step 2: Trial Depth of Waist Slab
Le/d $=25 ; d=3000 / 25=120 \mathrm{~mm}$
Le/d = $8 ; \mathrm{d}=1350 / 8=170 \mathrm{~mm}$
Clear cover $=20 \mathrm{~mm} ;$ Dia of bars $=10 \mathrm{~mm}$
$D=160+20+5=185 \mathrm{~mm}$
Adopt $\mathrm{D}=175 \mathrm{~mm}, \mathrm{~d}=150 \mathrm{~mm}$

```
Step 3: Design of Going Slab ( \(\mathrm{kN} / \mathrm{m}^{2}\) )
Loads on going ( \(\mathrm{kN} / \mathrm{m}^{2}\) )
\(\operatorname{Cos}(\theta)=270 /\left(270^{2}+160^{2}\right)^{0.5}=0.86\)
Self-weight of waist-slab \(=25(0.175) / \operatorname{Cos}(\theta)=5.09\)
Self-weight of steps \(=24(0.16 / 2)\)
Finishes
Live loads
    \(=1.92\)
    \(=1.0\)
    \(=5.0\)
Total
\(=13\)
```

Factored loads $=1.5(13)=19.5 \mathrm{kN} / \mathrm{m}^{2}$

Loads on Landing ($\mathrm{kN} / \mathrm{m}^{2}$)

Self-weight of slab $=25(0.175)=4.4$
Finishes
Live loads
= 1.0
$=5.0$

Total
$=10.4$

Factored loads $=1.5(10.4)=15.6 \mathrm{kN} / \mathrm{m}^{2}$
Consider I M width

Step 4: Limit state of Collapse - Flexure

Consider 1 m width of flight

19.5 kN/m

i) Negative Mu(@ supports)
$=15.6 \times 1.35^{2} / 2=14.22 \mathrm{kNm}$ per m width
ii) Positive Moment at Mid Span

Loading on Going $=19.5 \mathrm{kN} / \mathrm{m}$ (DL+LL+Finish)
Loading on Landing $=8.1 \mathrm{kN} / \mathrm{m}$ (DL+Finish)
$19.5 \mathrm{kN} / \mathrm{m}$

$=19.5 \times 3^{2} / 8-8.1 \times 1.35^{2} / 2=14.56 \mathrm{kNm}$ per m width
iii) $\mathrm{Mu}, \mathrm{lim}=0.36 \times 0.48 \times(1-0.42 \times 0.48) \times 1000 \times 20 \times 150^{2}$

$$
=62.1 \mathrm{kNm}>\mathrm{Mu} \quad \text { Depth OK }
$$

v) Compute Ast per m width

Positive Moment $=14.56 \mathrm{kNm}$ per m width
$14.56 \times 10^{6}=0.87 \times 415 \times A s t \times 150 \times(1-415 \times A s t /(1000 \times 150 \times 20))$
$14.56 \times 10^{6}=54157.5$ Ast - 7.49 Ast ${ }^{2}$
Ast $=280 \mathrm{~mm}^{2}$
Negative Moment $=14.22$ kNm per m width
Provide Ast $=280 \mathrm{~mm}^{2}$
iv) Ast. Minimum $=0.12 \times 1000 \times 175 / 100=210 \mathrm{~mm}^{2}<280 \mathrm{~mm}^{2}$
iv) Rebar Details

Main steel: Assume \#10 bars

$$
S=1000 \times 78.54 / 280=280 \mathrm{~mm} \mathrm{c} / \mathrm{c}<\max \text { spacing }
$$

Provide \#10 @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ both in Going and Landing

Distribution Steel: Assume \#8 bars
$S=1000 \times 50 / 210=238 \mathrm{~mm}$
Provide \#8 @ 230 mm c/c

Exercise

- A dog legged stair case is to be detailed with the
- following particulars:
- Clear dimension of stair case room $=4.48 \mathrm{~m} \times 2.1 \mathrm{~m}$
- The floor to floor height is 3.2 m
- Width of each tread $=250 \mathrm{~mm}$
- Width of each rise $=160 \mathrm{~mm}$
- Thickness of waist slab $=150 \mathrm{~mm}$
- Width of flight $=1 \mathrm{~m}$
- All round wall $=230 \mathrm{~mm}$

